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To describe the heterogeneous nature of stress transmission in granular materials, the concept of the “strong”
network consisting of contacts with large normal forces has been proposed by Radjaï et al. �Phys. Rev. Lett.
80, 61 �1998��. The shear stress is mainly determined by this strong network. The dual viewpoint is adopted
here, by not only considering the forces at contacts, but also the deformation. It is shown that the strain
increments are determined by the tangential component of the relative displacements at the contacts. A “mo-
bile” network consisting of contacts with large tangential relative displacements is defined that primarily
accounts for the strain increments. The investigation of the relation between the strong and the mobile net-
works shows that these networks are largely unrelated. An alternative network is defined that consists of
contacts at which the contribution to the work input is large. It is found that this work input occurs primarily
through the tangential forces and tangential relative displacements.
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I. INTRODUCTION

Micromechanics of quasistatic deformation of granular
materials deals with the relation between characteristics at
the microscopic level and those at the macroscopic, con-
tinuum level. Important objectives are to increase the under-
standing of the mechanical behavior of quasistatic deforma-
tion of granular materials, as well as �more ambitiously� to
develop micromechanically based constitutive relations.
Valuable methods for the former objective are the Discrete
Element Method �DEM�, a computer simulation method
originally developed by Cundall and Strack �1�, and photo-
elastic experiments �for example, �2–5��. From DEM simu-
lations and from photoelastic experiments, force chains were
observed: these are chainlike structures of �relatively� high
forces, which are correlated over a length scale that is
�much� larger than the average particle size. Thus the force
transmission �and hence the stress distribution� in granular
materials is very heterogeneous. This led to the concept of
the “strong” network �6�, based on the analysis of results of
DEM simulations. The strong network is defined as the set of
contacts at which the normal force is “large.” It was shown
by Radjaï et al. �6� that the shear stress is mainly determined
by the strong network, while the strong and the “weak” net-
works both contribute to the mean pressure.

A procedure to objectively determine the force chains is
given by Peters et al. �7�. A continuum description for the
stress tensor that takes into account the concept of the strong
network has been formulated by Cates et al. �8,9�.

For a proper understanding of the mechanical behavior of
granular materials, knowledge of the contact forces is not

sufficient, since these forces are linked to the deformation.
Therefore, the present investigation extends the study by
Radjaï et al. �6� by also considering the dual viewpoint.
Hence the deformation at contacts, i.e., the relative displace-
ments between particles that are in contact, is also consid-
ered. Previous studies have shown that the deformation is
very heterogeneous �2,10–12�, even when no shear band has
formed. The deformation occurs at “microbands” that sepa-
rate “blocks” of particles. Significant deformation occurs at
only a fraction of the total number of contacts.

Based on these observations, a division of the set of con-
tacts is proposed here that is similar to the division in the
strong and weak contacts, namely the division in “mobile”
and “immobile” contacts. At mobile contacts there is signifi-
cant deformation, while at immobile contacts there is only
small deformation. The mobile network then consists of the
mobile contacts. An alternative network, the “active” net-
work, based on consideration of the work input, is also ex-
amined. The method used here to investigate the force and
relative-displacement networks is that of two-dimensional
DEM simulation.

The outline of this study is as follows. In Sec. II the basics
of micromechanics of quasistatic deformation of granular
materials are recapitulated. In Sec. III the performed DEM
simulation is described. Force and relative-displacement net-
works are investigated in Secs. IV and V, respectively. The
relations between these force and relative-displacement net-
works are studied in Sec. VI. The network based on work-
input considerations is explored in Sec. VII. Finally, findings
from this study are discussed.

II. MICROMECHANICS

At the microscopic level of stiff, interacting particles the
important quantities are the contact force f i

rs, i.e., the force
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exerted on particle r by particle s, and the contact relative-
displacement increment d�i

rs between the particles r and s.
The contact relative-displacement increment d�i

rs, based on
the relative displacements of the particles centers, is defined
by d�i

rs=dUi
s−dUi

r, where dUi
r is the increment of the dis-

placement of the center of particle r.
At the macroscopic, continuum level the important quan-

tities in quasistatic deformation are the average stress tensor
�ij and the average strain-increment tensor d�ij. The macro-
scopic stress tensor and the strain-increment tensor are re-
lated to the microscopic contact force and contact relative
displacement by suitable averages. These are the microme-
chanical expressions for stress and strain.

The micromechanical expression for the average stress
tensor �ij adopted here is, for the two-dimensional case con-
sidered �see, for example, �2,13,14��

�ij =
1

S
�
c�C

fi
clj

c, �1�

where C is the set of contacts in the region of interest with
area S, f i

c is the force at contact c, and li
c is the branch vector

at contact c. The branch vector li
c is defined as the vector that

connects the centers of particles that are in contact.
The micromechanical expression for the average strain-

increment tensor is, for the two-dimensional case, considered
�14�,

d�ij =
1

S
�
c�C

d�i
chj

c, �2�

where d�i
c is the increment of the relative displacement at

contact c and hi
c is the polygon vector at contact c. The

polygon vector is obtained from the rotated polygon vector
gi

c by counterclockwise rotation over 90°. The rotated poly-
gon vector is defined as the vector that connects the centers
of adjacent polygons. These polygons arise as a way of par-
titioning the plane network of particle centers and contacts
�14,15�.

The micromechanical expression for the stress tensor, Eq.
�1�, seems to be well-established, although some controver-
sies remain �16–18� and new approaches have recently been
proposed �15,19,20�. The micromechanical expression for
the strain-increment tensor �Eq. �2�� does not involve particle
rotations. The proper way of accounting for particle rotations
in measures for macroscopic deformation does not seem to
be fully resolved �15,21,22�.

The contact force vector f i
c can be decomposed into nor-

mal and tangential components fn
c and f t

c, such that f i
c= fn

cni
c

+ f t
cti

c, where ni
c and ti

c are the unit normal and tangential
vector at the contact. Similarly, the normal and tangential
components of the relative-displacement increment are de-
noted by d�n

c and d�t
c, respectively.

The stress and strain-increment tensors can be split into
various contributions. The contributions that will be consid-
ered here are �i� the contributions due to normal and tangen-
tial force or relative displacement and �ii� the contributions
due to subsets of contacts.

For future reference, the stress tensor �ij and the strain-
increment tensor d�ij are split into terms �ij

N, �ij
T and d�ij

N,

d�ij
T , corresponding to the contributions of the normal and

tangential components of the force and relative-displacement
increments at contacts, respectively,

�ij
N =

1

S
�
c�C

�fn
cni

c�lj
c, �ij

T =
1

S
�
c�C

�f t
cti

c�lj
c, �3�

d�ij
N =

1

S
�
c�C

�d�n
cni

c�hj
c, d�ij

T =
1

S
�
c�C

�d�t
cti

c�hj
c. �4�

Note that �ij =�ij
N+�ij

T and d�ij =d�ij
N+d�ij

T .
The partial stress tensor �ij�Csub� and partial strain-

increment tensor d�ij�Csub� corresponding to a subset Csub of
the total set of contacts C are defined by �compare the mi-
cromechanical expressions for the stress and strain tensors,
Eqs. �1� and �2�, respectively�

�ij�Csub� =
1

S
�

c�Csub

f i
clj

c, d�ij�Csub� =
1

S
�

c�Csub

d�i
chj

c.

�5�

Note that the �total� stress tensor �ij and the �total� strain-
increment tensor d�ij are retrieved when Csub=C.

III. DEM SIMULATION

The contact constitutive relation, which relates the force
and the relative displacement at the contact level, used here
in the DEM simulation is that employed in �1�. This contact
constitutive relation involves elastic and Coulomb frictional
effects. The elastic component of the constitutive relation is
described by two linear springs in the normal and tangential
direction at the contact with spring constants kn and kt, re-
spectively. Only compressive normal forces are allowed. If
the normal force were to become negative, the contact is
considered to be disrupted for cohesionless materials.
Furthermore, the tangential force is limited by Coulomb fric-
tion, i.e., �f t

c���fn
c, where � is the interparticle friction

coefficient.
The two-dimensional simulation of biaxial deformation

�in which the principal strain �1 is imposed and the principal
stress �2 is kept constant� has been performed for an assem-
bly consisting of 50 000 disks from a lognormal particle-size
distribution for which the ratio of the standard deviation over
the mean equals 0.25. An initial assembly has been created in
a separate DEM simulation by starting from a sparse state
and then isotropically compressing until the desired isotropic
pressure was obtained. The microstructure of this initial as-
sembly is isotropic. The packing fraction �, i.e., the area
occupied by the particles divided by the total area occupied
by the assembly, of the initial assembly is �=0.843. The
corresponding coordination number, i.e., the average number
of contacts per particle, is �=4.17. The confining stress in
this dense initial isotropic state is denoted by �0. The param-
eters in the contact constitutive relation are selected such that
kt /kn=0.5, �=0.5, and �0 /kn=10−4, where the latter quantity
is nondimensional in the two-dimensional case considered
here. The ratio �0 /kn is small, so particle deformation is
small and the response is stiff in the elastic regime. Periodic
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boundary conditions have been employed to minimize
boundary effects and to suppress the formation of shear
bands in order to also investigate the behavior at larger
strains.

Invariants of the stress tensor �ij are the mean pressure
p=1/2��1+�2� and the shear stress q=1/2��1−�2�, with
principal stresses �1 and �2. Invariants of the strain tensor �ij
are the volumetric strain �V=�1+�2 and the shear strain
�S=�1−�2, with principal strains �1 and �2. The macroscopic
response, in terms of the evolution with imposed strain �1 of
shear strength q / p and of volumetric strain �V, is shown in
Fig. 1. The observed macroscopic behavior is typical for a
dense initial assembly. Note that this dense system, which
includes frictional effects, is far removed from a jamming-
unjamming transition, as studied in �23–26� for frictionless
systems.

IV. FORCE NETWORK

The description of the force network, as proposed in �6�,
is recapitulated to emphasize the duality with the relative-
displacement network defined in Sec. V. Furthermore, results
on the force network at large strains are given.

The relative contributions of the normal and tangential
contact forces to the shear stress, in both two- and three-
dimensional DEM simulations, have been determined in
�27–29�. They noted that the stress is mainly contributed by
the normal component of the contact forces. This was dem-
onstrated analytically in �30�.

The mean pressure and shear stress corresponding to �ij
N,

as defined in Eq. �3�, are denoted by pN and qN, respectively.
It can be shown that for assemblies of two-dimensional disks
pN= p, i.e., the tangential forces do not contribute to the
mean pressure: pT=0. For �1�0.5%, we find from the DEM
simulation that qN /q�0.86. Thus when considering the char-
acteristics of the contact network with respect to force trans-
mission, it suffices to focus on the normal forces, consistent
with the findings of �27–29�.

The set of contacts Cf�	� �where 0�	�1 is a nondimen-
sional parameter� is defined such that Pf�fn

c��	 for all con-

tacts c�Cf�	�. Here Pf�fn� is the cumulative probability
density function for the normal forces. Thus if c�Cf�	�, its
normal force is smaller than the 	-quantile. The strong net-
work consists of the contacts in the complement of Cf�	�,
i.e., C−Cf�	�. Probability density functions for the normal
and tangential components of the forces at contacts have
been studied in �5,31,32�.

The partial stress tensor �ij�	� is a concise notation for
the partial stress corresponding to the set Cf�	�, see also the
definition of the partial stress in Eq. �5�. The corresponding
partial mean pressure and shear stress are denoted by p�	�
and q�	�; note that p�	=1�= p and q�	=1�=q. The partial
mean pressure and partial shear stress are shown in Fig. 2 at
peak shear strength and at large strain for various values of
	. We observe from Fig. 2 that at peak shear strength for
	=0.5, p�	� / p=0.15 and q�	� /q=0.08. This means that the
50% of the contacts at which the normal force is smaller than
the median contact normal force, contribute 15% to the total
pressure and only 8% to the shear stress. Since for 	=0.9,
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FIG. 1. �Color online� Macroscopic response: evolution with
imposed strain �1 of shear strength q / p and volumetric strain �V.
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FIG. 2. �Color online� Partial pressure p�	� and partial shear
stress q�	� at peak shear strength �top� and at large strain �bottom�.
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p�	� / p=0.66 and q�	� /q=0.57, the strongest 10% of the
contacts contribute 34% to the total pressure and 43% to the
total shear stress. Thus the strong contacts mainly determine
the shear stress and, to a lesser extent, the mean pressure.
The behavior at large strain is similar to that at peak shear
strength, see Fig. 2. The influence of particle shape on these
stress quantities has been studied in �33�.

V. RELATIVE-DISPLACEMENT NETWORK

In Sec. IV the contributions �ij
N and �ij

T of the normal and
of the tangential forces to the stress tensor �ij have been
considered. It has been shown that the contribution of the
normal forces is dominant.

In this section the contributions d�ij
N and d�ij

T , as defined in
Eq. �4�, of the normal and tangential components of the
relative-displacement increments at contacts to the strain-
increment tensor d�ij are considered. The corresponding
volumetric and shear strain increments are d�V

N and d�S
N for

the normal relative displacements, while d�V
T and d�S

T corre-
spond to the tangential component.

The evolution of these quantities with imposed strain �1 is
shown in Fig. 3. For �1�0.5% the tangential component of
the relative displacement increments practically determines
the volumetric strain increment and completely determines
the shear strain increment. Thus when considering the char-
acteristics of the contact network with respect to deforma-
tion, it suffices to focus on the tangential relative displace-
ments. This means that mean-field assumptions, as often
employed in micromechanical studies, are generally incor-
rect �see also �36–38��.

In analogy to the definition of the set Cf�	�, the set of
contacts C��
� �where 0�
�1 is a nondimensional param-
eter� is defined such that P���d�t

c���
 for all contacts c
�C��
�. Here P��d�t� is the cumulative probability density
function for the absolute values of the increment of the tan-
gential relative displacement. Note that the tangential com-
ponent of the increment of relative displacement can take
either sign and its average is zero. Thus if c�C��
�, its
tangential relative displacement is smaller than the

-quantile. The mobile network consists of the contacts in
the complement of C��
�, i.e., C−C��
�. The contacts that
are part of the mobile network are called mobile, while the
contacts that are not part of the mobile network are called
immobile. Probability density functions of the normal and
tangential components of the relative displacements at con-
tacts have been studied in �32�. Those for displacement fluc-
tuations are studied in �34� for granular materials and in �35�
for foams.

The partial strain-increment tensor d�ij�
� is a concise
notation for the partial strain increment corresponding to the
set C��
�, see also the definition of the partial strain-
increment tensor in Eq. �5�. The corresponding volumetric
and shear strain increments are shown in Fig. 4 at peak shear
strength and at large strain. We observe from Fig. 4 that at
peak shear strength for 
=0.5, d�V�
� /d�V=0.11 and
d�S�
� /d�S=0.11. This means that the 50% of the contacts at
which the tangential relative displacement is smaller than the

median tangential relative displacement contribute 11% to
the volumetric strain increment and 11% to the shear strain
increment. Since at peak shear strength for 
=0.9,
d�V�
� /d�V=0.66 and d�S�
� /d�S=0.66, the most mobile
10% of the contacts contribute 34% to the total volumetric
strain increment and 34% to the total shear strain increment.
Thus the mobile contacts determine the volumetric and the
shear strain increment. The behavior at large strain is quali-
tatively similar to that at peak shear strength.

VI. COMPARISON OF STRONG AND MOBILE
NETWORKS

In the previous sections it has been shown that two net-
works can be identified. The strong network �defined via
normal forces� largely accounts for the shear stress and �to a
lesser extent� the mean pressure, while the mobile network
�defined via tangential relative displacements� largely ac-
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FIG. 3. �Color online� Evolution with imposed strain �1 of con-
tributions due to normal and tangential relative displacements to
volumetric strain increment �top� and shear strain increment
�bottom�.

N. P. KRUYT AND S. J. ANTONY PHYSICAL REVIEW E 75, 051308 �2007�

051308-4



counts for the volumetric and the shear strain increments.
Here relations between these networks are investigated.

A visual representation of the two networks is given in
Fig. 5. Four groups of contacts are distinguished: strong and
mobile, strong and immobile, weak and mobile, and weak
and immobile. The force chains are visible, as well as groups
of immobile contacts. This visual representation suggests
that the two networks are, to a large extent, unrelated �or
independent�.

This impression is further investigated by considering the
percentage of contacts in the four groups. For the specific
choice of 	=0.9 and 
=0.9, i.e., 10% strong and 10% mo-
bile contacts, these percentages are given in Table I at peak
shear strength and at large strain. Note that since 	=0.9, the
total percentage of strong contacts equals 10% and the total
percentage of weak contacts equals 90%. Similarly, since

=0.9, the total percentage of mobile contacts equals 10%

and the total percentage of immobile contacts equals 90%. If
the strong and mobile networks were disjoint, then the per-
centage of contacts that are strong and mobile would equal
zero. This is not observed; instead, the results indicate that
the two networks are unrelated �or independent�: then the
percentage of strong and mobile contacts would equal 0.1
�0.1=1%, which is fairly close to the observed value of
1.6%.

The contributions of the strong and the mobile networks
to the total mean pressure, shear stress, volumetric, and shear
strain increments are shown in Table II. This table shows that
the contributions of the 10% of the mobile contacts �corre-
sponding to 
=0.9� to the total mean pressure and shear
stress are about 10% at peak shear strength and at large strain
�values range from 0.10 to 0.13�, indicating that the mobile
network is not correlated with the strong network. The con-
tribution of the strong network to the shear strain increment
is as expected for uncorrelated networks �values are 0.14 and
0.13, while for uncorrelated networks the values would equal
0.10�. The contribution of the strong network to the volumet-
ric strain increment is larger than expected from uncorrelated
networks �values are 0.23 and 0.27, while for uncorrelated
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FIG. 4. �Color online� Partial volumetric and strain increment
d�V�
� and partial shear strain increment d�S�
� at peak shear
strength �top� and at large strain �bottom�.

FIG. 5. �Color online� Force and relative-displacement networks
for part of the assembly. The color of the contacts signifies the type
of contact: red contacts are strong and mobile; green contacts are
strong and immobile; blue contacts are weak and mobile; and black
contacts are weak and immobile. Result at peak shear strength;
	=
=0.8.

TABLE I. Percentages of various groups of contacts: strong vs
mobile network; 	=
=0.9.

Type of
contact

Percent of contacts

Peak shear strength Large strain

Mobile Immobile Mobile Immobile

Strong 1.6 8.4 1.4 8.6

Weak 8.4 81.6 8.6 81.4
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networks the values would equal 0.10�. A tentative explana-
tion for this observation is as follows. Volumetric strains are
mainly induced by tangential relative displacements corre-
sponding to contact reorientations �36�. The larger-than-
expected �relative to uncorrelated networks� volumetric
strain increment of the strong network is postulated to be
related to such buckling-related reorientations of contacts in
the strong network �6�.

VII. WORK NETWORK

The analysis of the force network showed that the major
part of the shear stress is due to the strong contacts with large
normal forces, while the analysis of the relative-
displacement network showed that the major part of the
volumetric and shear strain is due to deformation at the mo-
bile contacts with large tangential relative displacements. In
the previous section it has been shown that these two net-
works are largely unrelated. The question then arises of how
the work increment, being a combination of forces and
relative-displacement increments, is distributed over the con-
tacts. Total work increment, energy, and dissipation in qua-
sistatic deformation of granular materials have been studied
from the macroscopic viewpoint in �39�.

The total work increment �W is defined as �W=�WN

+�WT where the contributions due to the normal and tangen-
tial modes, �WN and �WT, respectively, are defined by

�WN =
1

S
�
c�C

fn
cd�n

c, �WT =
1

S
�
c�C

ft
cd�t

c. �6�

The evolution with imposed strain �1 of the two contribu-
tions �WN and �WT is shown in Fig. 6 in nondimensional
form. Beyond the elastic range �WN
�WT, so most of the
work input occurs through the tangential mode.

In analogy to the definition of the sets Cf�	� and C��
�,
the set of contacts C�W��� �where 0���1 is a nondimen-
sional parameter� is defined such that P�W�f t

cd�t
c��� for all

contacts c�C�W���. Here P�W�f td�t� is the cumulative prob-
ability density function for the absolute values of the work
increment f t

cd�t
c of the tangential mode. Thus if c�C�W���

its tangential work increment is smaller than the � quantile.
The “active” network consists of the contacts in the comple-
ment of C�W���, i.e., C−C�W���. The contacts that are part of
the active network are called active, while the contacts that
are not part of the active network are called inactive.

In analogy to the definitions of the partial stress and strain
tensors in Eq. �5�, the partial work increment �W��� is de-
fined as the work increment corresponding to the set C�W���,

�W��� =
1

S
�

c�C�W���

�fn
cd�n

c + f t
cd�t

c� . �7�

Note that �W��=1�=�W.
The partial work increment �W��� is shown in Fig. 7 at

peak shear strength for various values of �. The behavior at
large strain is similar. We observe from Fig. 7 that at peak
shear strength for �=0.5, �W��� /�W=0.04 and for �=0.9,
�W��� /�W=0.39. This means that the 50% of the contacts at
which the tangential work increment is smaller than the me-
dian tangential work increment contribute only 4% to the
work increment. Similarly, the most active 10% of the con-

TABLE II. Stress and strain contributions of various groups of
contacts; 	=
=0.9.

Contribution

Peak shear strength Large strain

Strong Mobile Strong Mobile

p�C� / p 0.34 0.13 0.32 0.11

q�C� /q 0.43 0.12 0.42 0.10

d�V�C� /d�V 0.23 0.33 0.27 0.23

d�S�C� /d�S 0.14 0.34 0.13 0.33
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FIG. 6. �Color online� Evolution with imposed strain �1 of con-
tributions to the work increments of the normal and tangential
modes, �WN and �WT, respectively; �0 is the initial isotropic stress.
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tacts contribute 71% to the total work increment. Thus the
active contacts determine the total work increment.

The relation of the active network with the strong network
is investigated by considering the percentage of contacts in
the four possible groups: active and strong, active and weak,
inactive and strong, and inactive and weak. Similarly, the
relation of the active network with the mobile network is
investigated by considering the percentage of contacts in the
four possible groups: active and mobile, active and immo-
bile, inactive and mobile, and inactive and immobile.

For the specific choice of 	=
=�=0.9, i.e., 10% strong
and 10% mobile contacts and 10% active contacts, these per-
centages are given in Table III at peak shear strength. Note
that since 	=0.9, the total percentage of strong contacts
equals 10% and the total percentage of weak contacts equals
90%. Similarly, since 
=0.9, the total percentage of mobile
contacts equals 10% and the total percentage of immobile
contacts equals 90%. Since �=0.9, the total percentage of
active contacts equals 10% and the total percentage of inac-
tive contacts equals 90%. If the active and strong networks
were unrelated, then the percentage of active and strong con-
tacts would equal 0.1�0.1=1%. Instead, this percentage
equals 2.8%. If the active and mobile networks were unre-
lated �or independent�, then the percentage of active and mo-
bile contacts would equal 1%. Instead, this percentage equals
4.2%. It appears that the active and the strong network are
related. The same applies to a stronger degree to the active
and mobile networks.

VIII. DISCUSSION

The contributions to the mean pressure and the shear
stress of the normal and tangential forces have been ana-
lyzed. It has been shown that the contributions of the normal
forces dominate over those due to the tangential forces.
Similarly, the contributions to the volumetric and shear strain
increments of the normal and tangential relative displace-
ments have been analyzed. It has been demonstrated that the
contributions of the tangential relative displacements domi-

nate over those due to the normal relative displacements.
Following Radjaï �6�, the strong network is identified at

whose contacts the normal force is large. The strong network
determines, to a large extent, the shear stress. In this study
the dual viewpoint is considered by considering the relative
displacements at contacts. It has been shown that a mobile
network can be identified at whose contacts the tangential
relative-displacement increment is large. This mobile net-
work determines, to a large extent, the volumetric and shear
strain increments.

For a proper description of quasistatic deformation of
granular materials, the existence of strong and the mobile
network must both be taken into account, since forces and
relative displacements at contacts are related by the contact
constitutive relation. It has been investigated whether the
strong and the mobile network are related. The conclusion is
that they are largely independent.

Since the stress is mainly determined by the normal
forces, while the strain increment is mainly determined by
the tangential relative displacements, the contributions to the
work increment of the normal and tangential modes have
been determined. It is found that the tangential mode domi-
nates. An alternative network, based on a distinction between
active and inactive contacts has been proposed.

These strong, mobile, and active networks have been con-
sidered here, since they are directly associated with macro-
scopic characteristics �stress and strain increment�, contrary
to other networks, such as a network based on contacts
where slip occurs �fully mobilized friction at the contact�.

A topic for further research is a comparison of the hetero-
geneous deformation of the mobile network with the defor-
mation according to the recently introduced “spot model”
�40,41�.

For micromechanical studies of constitutive relations for
quasistatic deformation of granular materials, a distinction
between a strong and a weak network, as suggested in �6�,
must accompany a distinction between the mobile and im-
mobile network, as suggested here. It is an open issue
whether the added complexity of constitutive closures for
each of these networks forms a promising approach to the
micromechanical modeling of quasistatic granular materials.
This distinction does provide a clearer insight into the com-
plex behavior of granular materials.
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